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Abstract

We consider the estimation of the volumetric heat capacity and the thermal conductivity as distributed parameters. The measurement
scheme consists of sequentially heating the boundary of the object in different source locations and measuring the induced temperature
evolutions in different measurement locations on the boundary. The estimation of the distributions of volumetric heat capacity and ther-
mal conductivity based on these boundary data is an ill-posed inverse boundary value problem. We propose an approach which is based
on transient data on the boundary and the modelling of the unknown coefficients as Markov random fields. The intended applications
are non-destructive retrieval of defects as well as the estimation of macroscopic characteristics of novel materials. We evaluate the pro-
posed approach by a numerical simulation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In different physical sciences the recovery of the internal
properties of an object from non-intrusive boundary mea-
surements is of extreme importance. Several examples very
common in our daily life include imaging modalities such
as ultrasound imaging and X-ray tomography, as well as
the more recently studied diffuse tomographic techniques
that make use of optical or electrical measurements
[11,26,3]. From the mathematical point of view, the related
parameter estimation problems are often unstable and
belong to the class of ill-posed inverse problems
[34,2,29,22,37,24]. This means that the questions related
to the existence, uniqueness and stability with respect to
the input data are not trivial [20]. There are two main
frameworks for the solution of ill-posed inverse problems,
regularization methods [34,15] and statistical inversion
framework [24].
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The regularization framework targets at the minimiza-
tion of the least squares norm, containing the discrepancies
between measured and computed data. From the statistical
point of view, the minimization of the least squares norm is
related to maximum likelihood estimation if the following
statistical hypotheses are valid: the errors in the measured
variables are additive, uncorrelated, normally distributed
and have zero mean and identical variance [6]. If the
inverse problem involves the estimation of only few
unknown parameters, such as the uniform thermal conduc-
tivity of an object, the minimization of the least squares
norm is usually a stable problem. However, if the task is
to estimate a large number of parameters, such as the dis-
tribution of thermal conductivity inside the object, the
problem is an ill-posed one and least squares approaches
are not feasible. In such cases, regularization (stabilization)
techniques are required, such as truncated singular value
decomposition, projection methods, Tikhonov regulariza-
tion or iterative methods, such as Landweber or Alifanov
iterations [34,2,7,13,32,27,36,30,35]. A common feature of
the regularization methods is that they force stability by
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Nomenclature

c(x) volumetric heat capacity distribution (J/m3 K)
f vector of unknown distributed parameters
f * vector of prior means for the parameters
fMAP maximum a posteriori estimate for parameters f

md number of temperature sensors
mh number of heater elements
mt number of transient measurements per sensor
np number of pixels in the image
q(x, t) surface heat flux (W/m2)
T temperature (K)
t time variable (s)
x position vector in R2

y vector of temperature measurements
a‘ vector of the coefficients of the FEM approxi-

mation

Cf prior covariance matrix for the parameters f

Nk patch of the object boundary modelling the kth
heater element

j(x) thermal conductivity distribution (W/m K)
u(x) basis functions of the FEM approximation
X object domain in R2

oX exterior boundary of the object domain
nj location of jth temperature sensor at the object

boundary
p(�) probability density function
fc parameter of prior density (scalar)
fj parameter of prior density (scalar)
Nðf�;Cf Þ Gaussian probability density with mean f*

and covariance Cf
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modifying the associated least squares problem and thus
they are not based on explicit analysis and modelling of
the unknowns.

Statistical inversion is based on the construction of sep-
arate models for the measurement process and the prior
information on the unknowns. The inverse problem is
reformulated as a problem of Bayesian inference. Both
the measurements and the unknown parameters are mod-
elled as random variables. The randomness, which reflects
the observer’s uncertainty concerning their values, is coded
in the probability distribution models of the parameters.
From the perspective of the statistical inversion theory,
the solution to an inverse problem is the posterior proba-
bility distribution of the parameters of interest, when all
information available has been incorporated into the
model [24]. While regularization techniques are typically
aimed at producing a reasonable estimate of the unknown
parameters based on the data available, in the statistical
inversion theory the solution to an inverse problem is not
considered as a single (point) estimate, but the posterior
distribution is typically used to produce both point esti-
mates and reliability measures for the uncertainty related
to the unknowns given all underlying models and the
measurements [24]. Most often, this necessitates the use
of sampling which is most often carried out by the Metrop-
olis–Hasting algorithm or the Gibbs sampler. For examples
on sample based solutions for inverse problems, see
[16,31,26]. However, in very large scale problems sampling
can turn out to be infeasible and one often has to satisfy
with the maximum a posteriori (MAP) estimates and some
rough error estimates. However, the design and the feasi-
bility of the likelihood and prior models is of great impor-
tance and sampling and otherwise accurate inference is
pointless unless the models are good enough.

In this paper we apply the statistical inversion approach
to the solution of a tomographic inverse thermal problem.
The physical problem of interest consists of heating part of
the boundary of an object and measuring the temperature
evolution at specific points of its surface. Such temperature
measurements are used in the inverse analysis for the
reconstruction of the distributions of thermal conductivity
and volumetric heat capacity inside the object.

Thermal tomography is a non-intrusive non-destructive
technique for the detection of inclusions and non-homoge-
neities. Possible applications include detection of erosion
inside steel furnaces or the existence of hydrates formations
inside deep-sea oil pipelines, see e.g. [32]. The steady-state
thermal tomographic problem has been addressed in refer-
ence [23], while in the present paper heat transfer within the
object is formulated in terms of transient, two-dimensional
linear conduction. However, in reality for many applica-
tions the steady-state is reached for excessively long times
and the inverse analysis need to be undertaken during tran-
sients. Most importantly, the transient measurements con-
tain much richer information on the unknown distributions
than the steady state measurements. A linearized version of
thermal tomographic problem with transient data has been
previously discussed in [14]. In that paper, the volumetric
heat capacity was assumed a known constant and the line-
arized inverse problem was to reconstruct a small unknown
deviation in the thermal conductivity from a known con-
stant background value. Also, related shape estimation
type approaches for the detection of structural flaws or cor-
rosion defects from materials with known thermal proper-
ties have been proposed in [5,8,10]. In these approaches,
the goal is to reconstruct the shape of a part of the exterior
boundary of the object based on the temperature data.

In this paper, the unknown distributions of volumetric
heat capacity and thermal conductivity are modelled as
mutually independent Gaussian Markov random fields.
More specifically, both parameters are modelled as spatially
smooth distributions, whose smoothness and uniformity
with respect to the variance and other spatial properties
can be controlled. Moreover, the natural constraint of
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positivity of the thermal conductivity and volumetric heat
capacity, is taken into account by using a logarithmic
parametrization of both coefficients. With the logarithmic
parameterization, the MAP estimation problem becomes
a unconstrained optimization problem instead of a other-
wise resulting constrained one. Another advantage of the
logarithmic parameterization is that it reduces the magni-
tude of the difference in the values of the thermal conductiv-
ity and volumetric heat capacity parameters, and this
scaling may improve the numerical stability of the optimiza-
tion algorithm and is helpful in estimating target distribu-
tions with large contrast. We carry out a simulation study
and show that the transient data and the prior model facil-
itate the stable estimation of spatially varying thermal
parameters. Furthermore, the prior model is shown to be
a robust model in the sense that even discontinuous targets
can be relatively well located.
2. Methods

2.1. Forward problem

Let X � R2 be the object domain with boundary oX. In
the measurement setup, mh heater elements and md temper-
ature sensors are attached to the boundary oX of the
object. The heater elements are modelled by the disjoint
surface patches Nk � oX and the temperature measurement
locations are denoted by nj 2 oX. In the measurement pro-
cess, a known heat flux is applied to one of the heater ele-
ments, say Nk, and the evolution of the temperature is
measured at time instants ft1; t2; . . . ; tmtg at each of the
measurement locations nj; j ¼ 1; 2; . . . ;md. This heating
and measurement process is then repeated for all the mh

heater elements.
The forward model we use for these measurements is

cðxÞ oT ðx; tÞ
ot

¼ r � ðjðxÞrT ðx; tÞÞ in X ð1Þ

jðxÞ oT ðx; tÞ
on

¼ qðx; tÞ on oX ð2Þ

T jt¼0 ¼ T 0; ð3Þ

where c(x) is the volumetric heat capacity distribution and
j(x) is the thermal conductivity distribution and T0 is the
initial temperature.

In this paper, the numerical solution of the above initial
value problem is based on the finite element method
(FEM). The variational form of the model (1)–(3) isZ

X
c
oT
ot

vdx ¼
Z

oX
qvdS �

Z
X

jrT � rvdx; ð4Þ

T jt¼0 ¼ T 0; ð5Þ

where v 2 H1(X), H1(X) being the associated Sobolev
space.

In the FEM discretization, the domain X is divided into
Ne disjoint triangular elements, joined at Nn vertex nodes.
For the solution of (4) we write the approximation
T ðx; tÞ ¼
XNn

k¼1

akðtÞukðxÞ 2 Qh; ð6Þ

where uk are the nodal basis functions of the FEM mesh
and Qh ¼ spanfukg � H 1ðXÞ. Using the approximation
(6), the semidiscrete Galerkin scheme gives

MðcÞ oa
ot
¼ �GðjÞaþ V ; ð7Þ

where a ¼ ða1; a2; . . . ; aNnÞ
T 2 RNn . The elements of the

mass and stiffness matrices and the boundary term are

Mjk ¼
Z

X
cujuk dx; Gjk ¼

Z
X

jruj � ruk dx;

V j ¼
Z

oX
quj dS:

With fixed c and j, the semidiscrete form (7) can be solved
numerically for a for example with the implicit Euler itera-
tion with a constant time step Dt. This leads to the form

ðI þM�1GDtÞa‘þ1 ¼ a‘ þM�1V Dt: ð8Þ

where we denote a‘ ¼ ða1ð‘DtÞ; . . . ; aNnð‘DtÞÞT. The com-
puted temperature data T ðnj; tpÞ at the measurement loca-
tion nj 2 oX at the specified measurement time tp is
obtained by interpolation from the values fT ðnj; ‘DtÞ;
‘ ¼ 0; 1; 2; . . . ;N tg obtained by Eq. (6) at the time steps
used in the implicit Euler iteration.

To complete the specification of the forward model, we
introduce the notation that will be used for data and for-
ward problem in the subsequent sections. The temperature
evolution is measured at time instants ft1; t2; . . . ; tmtg at
each of the locations fnj; j ¼ 1; . . . ;mdg as response to
the excitation of the heat source at Nk. The corresponding
computed data is concatenated into a vector

T ðkÞ ¼ ðT ðn1; t1Þ;T ðn1; t2Þ; . . . ;T ðnmd
; tmt�1Þ;T ðnmd

; tmtÞÞ
T 2Rmtmd

ð9Þ

giving the forward solution for the source at Nk. By concat-
enating the vectors T(k) for all the mh heat source locations
into a single column vector, we obtain the model for all
computed (errorless) data

�y ¼ ðT ð1Þ; . . . ; T ðmhÞÞT 2 Rm; m ¼ mtmhmd ð10Þ

for the thermal tomography experiment.
At this stage, we specify the discretization for the

unknowns (j,c) in the inverse problem. We divide the
domain X to a set of np disjoint image pixels (i.e., volume
elements)

X ¼
[np

j¼1

Xj ð11Þ

and use the piecewise constant approximations

jðxÞ ¼
Xnp

j¼1

jjvjðxÞ; ð12Þ
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cðxÞ ¼
Xnp

j¼1

cjvjðxÞ; ð13Þ

where vj denote the characteristic functions of the image
pixels Xj. We identify the coefficients (distributed parame-
ters) (j(x),c(x)) with the vectors j 2 Rnp and c 2 Rnp con-
taining the pixel values of the thermal conductivity and
volumetric heat capacity. With these choices, the parameter
vector for the inverse problem becomes

f ¼
j

c

� �
2 Rn; n ¼ 2np: ð14Þ

For the FEM-based forward solver we use the notation

�y ¼ T ðf Þ; ð15Þ
that is, the vector of computed (errorless) data for given
distributions c and j.

2.2. Likelihood, prior and posterior models

In the Bayesian framework for inverse problems, the
first task is to construct the likelihood and prior models
in terms of probability densities [24]. The likelihood is
the stochastic model for the observations given that all
the unknowns were known. The likelihood density is
denoted by p(y|f), where y denote all observations and f

all unknowns. The prior model is the stochastic model
for all unknowns and is denoted by ppri(f). The prior model
should reflect all the prior information and especially all
uncertainty in the unknowns. Thus, for example, if the
unknown is a positive variable, we should have ppri(f) = 0
for all f < 0.

Given the likelihood and prior models, the information
and uncertainty in the unknowns once the measurements
have been obtained, is contained in the posterior density
p(f|y). The posterior density is obtained by the Bayes’ the-
orem and we have

pðf jyÞ / pðyjf Þppriðf Þ;

where the proportionality factor is the marginal density of
the measurements and is not needed in most calculations.
From the posterior density point and spread estimates
can be calculated. The most straightforward estimate is
the maximum a posteriori (MAP) estimate, the computa-
tion of which is a minimization problem. In contrast, the
computation of the posterior mean estimate is formally
an integration problem which in most high dimensional
cases turns out to be a computationally massive task since
it requires the use of Markov chain Monte Carlo (MCMC)
methods. This applies also to the computation of exact
spread estimates such as confidence interval type estimates.
For general references on MCMC, see e.g. [21,17,19,18].

The standard choice is to model the measurement errors
as zero mean additive Gaussian noise. This is the case for
example when the noise is due to thermal noise from the
electronics of the measurement equipment only, and the
computational model for the forward problem is an ade-
quately accurate one for the required accuracy, see
[24,25,4] for the problem related to approximation errors.

In this paper we use relatively accurate forward models
and shall also adopt the conventional measurement error
model. Thus, we write for the observation model

y ¼ T ðf Þ þ e

where y is vector of measured temperatures, e � pe ¼
Nð0;CeÞ and Ce is the covariance matrix of the noise e with
C�1

e ¼ LT
e Le. Assuming that the measurement errors and the

unknown parameters are statistically independent, we ob-
tain the likelihood model

pðyjf Þ ¼ peðy � T ðf ÞÞ / exp � 1

2
kLeðy � T ðf ÞÞk2

� �
:

The standard approach to model smooth coefficient func-
tions is as follows. The thermal conductivity and volumet-
ric heat capacity distributions are modelled as spatially
smooth Gaussian Markov random fields with means
j�; c� and covariances Cj;Cc, respectively. Furthermore, if
they are modelled as mutually statistically independent,
we have the prior model pG(f)

f � pGðf Þ ¼Nðf�;Cf Þ; ð16Þ

where

f� ¼
j�
c�

� �
; Cf ¼

Cj 0

0 Cc

� �
; C�1

f ¼ LT
f Lf : ð17Þ

Details of the construction of the terms f* and Cf are ex-
plained in Section 2.3.

The thermal conductivity and volumetric heat capacity
are positive valued functions. To take the positivity of
the parameter distributions into account, the standard
approach is to include the positivity prior

pþðf Þ ¼
Yn

i¼1

pþðfiÞ; pþðfiÞ ¼
1; fi > 0

0; otherwise

�
ð18Þ

With these models, the overall prior ppri(f) becomes

ppriðf Þ ¼ pþðf ÞpGðf Þ: ð19Þ

Thus we have for the posterior density

pðf jyÞ/ pðyjf Þppriðf Þ¼ peðy�T ðf ÞÞppriðf Þ

/ pþðf Þexp �1

2
ðkLeðy�T ðf ÞÞk2þkLf ðf � f�Þk2Þ

� �
:

ð20Þ
2.3. Construction of a proper smoothness prior

The conventional smoothness prior model for the mutu-
ally independent pair (j,c) is defined as

pGðf Þ / exp � 1

2
kLf k2

� �
¼ exp � 1

2
f TBf

� �
; ð21Þ
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where B = LTL, L is a block matrix

L ¼
fjD 0

0 fcD

� �
; ð22Þ

where D is a first order difference matrix between adjacent
pixels in the image basis (see Eqs. (11)–(13)) and fj > 0,
fc > 0 are scalar parameters. The prior density (21) is
improper (i.e., B is not invertible) because the matrix D

has null space KerðDÞ ¼ spanfug, where u ¼ �
ffiffiffiffiffiffiffiffi
2=n

p
ð1; 1;

. . . ; 1ÞT 2 Rn=2. Mathematically, this type of a model has
infinite (prior) variance for each variable.

In diffuse tomographic problems in which the measure-
ments are obtained only on the boundary oX of the
domain, the measurements reduce the uncertainty signifi-
cantly more near the boundary than in the center of the
domain. When conventional improper smoothness prior
models are used the homogeneity of the resulting posterior
estimates tend to be poor.

To avoid this problem, we construct a proper prior
model which exhibits the desired property that the mar-
ginal distributions of all variables can be controlled. The
prior model (21) is used as a starting point in the construc-
tion of proper smoothness prior model.

For this end, we follow the procedure in [24,9]. Assume
that we have a prior model for the mean and the variability
of the actual values of the thermal conductivity and volu-
metric heat capacity (j,c) at some points or pixels in the
domain X. Let k be the number of these pixels. Next, we
want to write a joint marginal prior density for these pixels.
By possibly reordering the elements of f, we may write the
partition f ¼ ðf1; f2ÞT 2 Rn, where f2 2 R2k contain
the thermal conductivity and heat capacity parameters of
the ‘‘specified” pixels where we can specify prior model
for the actual values, and f1 2 Rn�2k contain the thermal
conductivity and heat capacity parameters of the remain-
ing,‘‘unspecified” pixels. By partitioning accordingly the
matrix

LTL ¼ B ¼
B11 B12

B21 B22

 !

in Eq. (21), we can write a proper conditional smoothness
prior for f1 conditioned on f2 as [24,9]:

pGðf1jf2Þ / exp � 1

2
ðf1 þ B�1

11 B12f2ÞTB�1
11 ðf1 þ B�1

11 B12f2Þ
� �

:

ð23Þ

Next, assume that the thermal conductivity and heat capac-
ity in the specified pixels is modelled by a Gaussian prior

pGðf2Þ / exp � 1

2
ðf2 � f�;2ÞTC�1

0 ðf2 � f�;2Þ
� �

; ð24Þ

where vector f*,2 is the mean and C0 is the covariance ma-
trix, respectively.

Using Eqs. (23) and (24), we can now obtain a new,
proper smoothness prior for f as [24,9]:
pGðf1; f2Þ ¼ pGðf1jf2ÞpGðf2Þ

/ exp � 1

2
ðf � f�ÞTC�1

f ðf � f�Þ
� �

; ð25Þ

where

f� ¼
�B�1

11 B12f2

f�;2

 !
; C�1

f ¼
B11 B12

B21 B21B�1
11 B12 þ C�1

0

� �
:

ð26Þ

Further, let us denote the Cholesky decompositions of B11

and C�1
0 by B11 ¼ LT

1 L1 and C�1
0 ¼ LT

0 L0. Then we can write
the prior model (25) and (26) as

pGðf Þ / exp � 1

2
kLf ðf � Qf�;2Þk2

� �
; ð27Þ

where

Lf ¼
L1 L1B�1

11 B12

0 L0

 !
; Q ¼ �B�1

11 B12

I

 !
: ð28Þ

For example, if we set the variables f2 to be mutually inde-
pendent and spatially homogeneously distributed in X, the
distance between the fixed pixels controls the correlation
distance of the coefficient estimates. Moreover, if the mar-
ginal variances of the fixed pixels are equal, the rest of the
pixels can be adjusted to have approximately the same vari-
ances too, thus resulting in spatial homogeneity of the prior
model, see [24,9] for details. For typical draws for the prior,
see Section 3.
2.4. Change of variables and computation of the MAP

estimate

The computation of the MAP estimate

fMAP ¼ arg max pðf jyÞ

for the model (20) amounts to the constrained minimiza-
tion problem

fMAP ¼ arg min
f>0
fkLeðy � T ðf ÞÞk2 þ kLf ðf � f�Þk2g: ð29Þ

The use of constrained optimization techniques for mini-
mizing (29) for high-dimensional nonlinear distributed
parameter problems such as the thermal tomography prob-
lem can be computationally cumbersome. Moreover, if the
expected ranges of the thermal conductivity and heat
capacity values are several orders of magnitude apart,
numerical instability problems may occur in the computa-
tion of the MAP estimate.

In order to avoid the constrained optimization problem
and the range problem, we introduce the change of
variables

h ¼ logðf Þ 2 Rn;

which allows us to drop the positivity constraints since
f = exp(h) > 0. Furthermore, if we have for example
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hmax � hmin = 7, the range of the respective coefficient f

covers three orders of magnitude.
In terms of the parameter h the computation of the

MAP estimates now takes the form

hMAP¼ argmin
h
fLðhÞþPðhÞg

¼ argmin
h
fkLeðy�T ðexpfhgÞÞk2þkLf ðexpfhg� f�Þk2g;

ð30Þ

where L and P are called the likelihood and prior poten-
tials, respectively.

The mapping f ´ T is nonlinear, and thus the introduc-
tion of a further exponential nonlinearity does not result in
any increase in computational or implementational tasks.

Since all associated mappings are smooth, we compute
the MAP estimate (30) with a (simplified) Newton method
equipped with line search. The Newton type iteration can
be written as

hðiþ1Þ ¼ hðiÞ þ lðiÞdhðiÞ ð31Þ

where the search direction dh(i) is obtained as the solution
of

ðJ T
h LT

e LeJ h þ H hÞdhðiÞ ¼ J T
h LT

e Leðy � T ðexpfhðiÞgÞÞ � ghðiÞ ;

where J h ¼ J f ðexpfhðiÞgÞ is the Jacobian matrix of the map
T(exp{h}), the scalar l(i) is a step length parameter deter-
mined by a line search algorithm and

gh ¼ KhLT
f Lf ðexpfhg � f�Þ

H h ¼ KhðLT
f Lf ÞKh þ diagðghÞ

are the gradient and Hessian of the prior potential PðhÞ in
Eq. (30), respectively, and

Kh ¼ diagðexpfhgÞ:

A simplification compared to Newton’s method in iteration
(31) is that the Hessian of the likelihood term LðhÞ is
approximated with the standard Gauss–Newton approxi-
mation [28,1].

Consider next the computation of the Jacobian matrix
Jh. For notational simplicity, we will derive the computa-
tion of the Jacobian

J f ¼

oT ð1Þ

oj1
; . . . ; oT ð1Þ

ojnp
; oT ð1Þ

oc1
; . . . ; oT ð1Þ

ocnp

..

. ..
. ..

. ..
.

oT ðmhÞ

oj1
; . . . ; oT ðmhÞ

ojnp
; oT ðmhÞ

oc1
; . . . ; oT ðmhÞ

ocnp

0
BBB@

1
CCCA;

where the vectors oT ðsÞ

ojk
2 Rmtmd ; oT ðsÞ

ock
2 Rmtmd contain the

derivatives of the forward solution corresponding to the
s:th heater element, see Eq. (9). The corresponding blocks
of the Jacobian Jh can be then obtained by the chain rule
of differentiation as
oT ðsÞ

ohk
¼ oT ðsÞ

ojk

ojk

ohk
¼ oT ðsÞ

ojk
expfhkg; k ¼ 1; . . . ; np

oT ðsÞ

ohkþnp

¼ oT ðsÞ

ock

ock

ohkþnp

¼ oT ðsÞ

ock
expfhkþnpg; k ¼ 1; . . . ; np:

Denote bk
‘ ¼ oa‘=ock 2 RNn . We differentiate Eq. (8) with

respect to coefficient ck to get

Dt
oM�1

ock
G|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Ak

a‘þ1þðIþM�1GDtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
B

bk
‘þ1¼ bk

‘ þDt
oM�1

ock
V|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Ck

ð32Þ

bk
‘þ1¼B�1ðbk

‘ �Aka‘þ1þCkÞ ð33Þ

where a‘ 2 RNn is the current iterate of the forward solution
(see Eq. (8)) and we have

oM�1

ock
¼ �M�1 oM

ock
M�1:

Correspondingly, we have for ck
‘ ¼ oa‘=ojk 2 RNn

DtM�1 oG
ojk|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Dk

a‘þ1 þ ðI þM�1GDtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
B

ck
‘þ1 ¼ ck

‘ ð34Þ

ck
‘þ1 ¼ B�1ðck

‘ � Dka‘þ1Þ: ð35Þ

Note that both oM/ock and oG/ojk are very sparse low
rank matrices and do not depend on either c or j. The ele-
ments of the vectors

oT ðsÞ

ock
2 Rmtmd ;

oT ðsÞ

ojk
2 Rmtmd

at the measurement locations nj at the specified measure-
ment times tp can be obtained from solutions of Eqs. (33)
and (35) by utilizing Eq. (6) and the temporal interpolation
that was explained for the computation of the temperatures
T(nj, tp) in Section 2.1.
3. Numerical results

We evaluate the proposed estimation approach of the
thermal conductivity and volumetric heat capacity by sim-
ulations in the case X � R2. The object domain is a circle
with radius of 25 mm. The measurement system in the sim-
ulations consist of mh = 8 heater elements Nk, each cover-
ing 1/8 of the length of the boundary oX, and md = 8
point-like temperature detectors located between the heater
elements on oX at x = nj. In the simulated measurement,
the heat flux qin = 300 W/m2 is applied to each of the hea-
ter elements Nk at a time for period of 120 s, and the tem-
peratures at all eight detectors are measured for 600 s with
measurement interval of 2 s. This measurement process is
then repeated for all the eight sources, leading to a mea-
surement vector y 2 R19200.

In this study, we assume that the object is insulated from
the surrounding space during the heating and temperature
measurements, and thus the heat flux through oX is non-
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Fig. 1. An example of the temperature measurements. Top: Detector
adjacent to the active heating element which is turned off at t = 120 s.
Bottom: Detector opposite to the active heating element. Thin solid line:
Noisy measurement for the object X shown in the top row of Fig. 4. Thick
solid line: Forward solution corresponding to the object without the air-
inclusions (i.e., noiseless computed data corresponding to constant values
(j0,c0) over the entire domain X).
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zero only on the part of boundary Nk modelling the active
heating element. Thus, we write the model

qðx; tÞ ¼
qin; x 2 Nk; t 2 ½0 120� s
0; otherwise:

�
ð36Þ

for the Neumann data in the forward model.
The simulated target distributions (j,c) for the simula-

tion are shown in top left and right in Fig. 4, respectively.
The simulated object X consist of two circular inclusions
on homogeneous background. The values of the thermal
conductivity and volumetric heat capacity in the back-
ground are j0 ¼ 1 W=m K and c0 ¼ 106 J=m3 K corre-
sponding to typical values of clay. The values of j and c

in the circular inclusions are j1 ¼ 0:03 W=m K and
c1 ¼ 1000 J=m3 J K corresponding to the thermal conduc-
tivity and heat capacity values of air.

For the simulation of the temperature data, the domain
X is divided into a finite element mesh of Ne = 3856 trian-
gular elements with Nn = 2057 nodes. The simulated mea-
surement data is computed using time step parameter
Dt = 1 s in the implicit Euler method (8). Gaussian random
noise with standard deviation r = 0.5 K is added to the
simulated temperature measurements. Examples of temper-
ature measurements for two measurement sensors are given
in Fig. 1. The top figure shows the temporal evolution of
the temperature for a detector next to the active heating
element and the bottom figure for a detector opposite to
the active heating element, respectively.

For the estimation of the thermal conductivity and heat
capacity parameters, the domain X is divided into a mesh
of Ne = 2768 triangular elements with Nn = 1513 nodes,
and the images (j,c) are represented in a lattice of 524

image elements, leading to unknown f 2 R1028 in (29).
The division of the domain X into the 524 image elements
is displayed in Fig. 2. When solving (29) by the Newton
type method, a time step of Dt = 2 s is used in the implicit
Euler method for forward solutions and Jacobian. Thus in
this case the time steps for the solution (8) coincide with the
measurement times. If they do not, the measurements can
be interpolated as explained in Section 2.1. Note that, in
order to avoid the so-called ‘‘inverse crime”,1 the simula-
tion of the measurements has been carried out in a compu-
tationally more accurate model than the one used in the
estimation of the coefficients.

For the unknown f we construct a proper first order
smoothness prior distribution as explained in Section 2.3.
We aim to control the approximative correlation length
of the coefficient distributions as follows. We choose seven
pixels as ‘‘specified” pixels such that their distances from
each other is approximately one fourth of the diameter of
the domain X. The location of the seven specified pixels
are shown with asterisks in Fig. 2. The thermal conductiv-
ity and volumetric heat capacity parameters of the specified
Fig. 2. The division of the domain X into a lattice of 524 image elements.
The location of the seven specified pixels for the construction of the proper
smoothness prior density are denoted by asterisks.

1 An inverse crime refers to an overly optimistic test setting where an
identical numerical model is used for both the simulation of the
measurement data and solution of the inverse problem [24].
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pixels define elements f2 2 R14 of the unknown f. For the
marginal distribution of the parameters f2 we specify a
Gaussian prior model of the form (24) with diagonal
covariance matrix C0 (i.e., elements of f2 are assumed
mutually independent). For the prior mean of f2 we assume
values j� ¼ 1 W=m K and c� ¼ 106 J=m3 K, respectively.
The standard deviations (rj,rc) of f2 are chosen such that
½j� � 3rj; j� þ 3rj� ¼ ½0:5; 1:5�W=m K and ½c� � 3rc;
c� þ 3rc� ¼ ½0:5; 1:5� � 106 J=m3 K, respectively. These
choices correspond to the assumption that the values of
(j,c) in the specified pixels lie with prior probability 0.99
within these intervals.

Once the marginal distribution for f2 has been specified,
the parameters fj and fc for the difference operator, see Eq.
(22), are tuned such that the pixelwise prior variances in the
smoothness prior model pG(f), Eq. (27), for the thermal
conductivity and volumetric heat capacity images become
approximately equalized over the entire image. That is,
we choose fj and fc such that we have for the marginal
variances varðjkÞ 	 r2

j and varðckÞ 	 r2
c for all k in the

prior model. For a more systematic approach for the equal-
ization of the prior variances over subdomains, see [9]. Two
0.413 1.692

Fig. 3. Two random samples from the prior density pG(f), Eq. (27). Left colu
random samples from the prior density pG(f), Eq. (27), are
shown in Fig. 3.

The reconstructed thermal conductivity and volumetric
heat capacity images are shown on the left and right in
the bottom row of Fig. 4, respectively. The reconstructions
were obtained by solving the MAP estimation problem (30)
with the parameterization h, and the displayed images
show the reconstruction exp{hMAP}. The minimization
problem (30) was solved with the Newton type algorithm
(31) as described above. As can be seen, the air inclusions
are reconstructed well in both, thermal conductivity and
volumetric heat capacity, parameters. It is to be noted that
we did not expect to find any inclusion type targets as such,
which is reflected in the choice of the smooth prior model,
see especially the typical draws in Fig. 3. However, due to
the otherwise feasible construction of the prior with respect
to the approximate range of expected values, the recon-
structions can be argued to be at least indicative. Since
the prior model is constructed for smooth targets, the
boundaries of the inclusions are naturally smooth. If sharp
boundaries are expected, total variation priors can be
employed, see for example [12,26]. On the other hand, if
300000 1.3e+06

mn: Thermal conductivity j. Right column: Volumetric heat capacity c.
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Fig. 4. Top left: Thermal conductivity j. Top right: Volumetric heat capacity c. Bottom left: Reconstruction of the thermal conductivity. Bottom right:
Reconstruction of the volumetric heat capacity.
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smooth target distributions with very high contrast are
expected, one could write the smoothness prior in terms
of the parameterization h instead of the parameterization
f. In general, a smoothness prior model such as the one
used here, can be a good robust first choice for the prior.

Fig. 5 shows approximate posterior marginal densities
for the two pixels marked in the reconstructions in
Fig. 4. The left column shows the approximate marginal
densities of the thermal conductivities in the marked pixels,
and the right column shows the approximate marginal den-
sities of the volumetric heat capacity, respectively. The
dashed vertical lines denote the values of the MAP estimate
in the chosen pixels and the solid vertical lines denote the
true values of the unknowns, respectively. The marginal
posterior densities were approximated as follows. First, a
Gaussian approximation for the posterior density of the
parameters h was obtained by linearizing the map
T(exp{h}) around the MAP estimate hMAP, and computing
the covariance matrix by

ChMAP
¼ ðJ T

hMAP
LT

e LeJ hMAP
þ H hMAP

Þ�1
;

where H hMAP
is the Hessian of the prior functional PðhÞ in

Eq. (30). The approximate marginal density for the param-
eter hl can be then obtained as

hl �NððhMAPÞl; ðChMAP
Þl;lÞ:

Next, the approximate marginal posterior density of the
parameter fl = exp{hl} is obtained by standard techniques
for transformations of functions of random variables, see
for example [33]. Let

UhlðtÞ ¼ Pfhl 6 tg

denote the (cumulative) distribution function of hl. Using
the fact that exp{hl} is monotonic function, the distribution
function of fl can be obtained by

UflðtÞ ¼ Pfexpfhlg 6 tg ¼ Pfhl 6 logðtÞg ¼ UhlðlogðtÞÞ;

and the density function of fl is then obtained as

d

dt
UhlðlogðtÞÞ:
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Fig. 5. Approximate marginal posterior densities for the two pixels marked in the bottom row of Fig. 4. Left column: Thermal conductivity j. Right
column: Volumetric heat capacity c. For illustration purposes, the values of the marginal densities have been scaled to the range [0,1]. The dashed vertical
line indicates the values of the thermal conductivity and volumetric heat capacity from the MAP estimate and the solid vertical line shows the respective
true values. The line corresponding to the true value in the lower right hand figure cannot be distinguished from the vertical axis line.
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The quality of the approximate error estimates depends on
both the quality of the models and the nonlinearity of the
mappings. In our case, using the smoothness prior model
allows us to obtain feasible images of the spatial coefficient
distributions but does not allow for very reliable error esti-
mates, which is reflected by the approximate posterior mar-
ginal distribution of the heat capacity of pixel 357 (bottom
right in Fig. 5). In the other three approximate marginal
distributions the MAP estimate and the distribution coin-
cide well with the actual coefficient values. If more reliable
error estimates are to be obtained, the qualitative nature of
the spatial target distribution has to be known better than
was expected here. If small or blocky targets are to be
recovered, ‘1 and total variation priors can be used, respec-
tively, see for example [26]. Furthermore, the respective ex-
act marginal distributions can in practice be obtained only
via MCMC methods.
4. Conclusions

This paper deals with a tomographic inverse thermal
problem, where the transient temperature measurements
taken at the surface of a heated object are used for the iden-
tification of the spatial distributions of volumetric heat
capacity and thermal conductivity. The Bayesian approach
was used for the solution of the inverse problem, where an
explicit prior model was constructed for the unknown
parameters inside the domain. The computational model
for the forward problem was based on a semidiscrete finite
element approximation. A test case dealing with the identi-
fication of two inclusions in a conducting medium reveals
that the proposed approach is stable and feasible. More-
over, the use of a proper smoothness prior model is a rela-
tively robust one even in the case of spatially discontinuous
parameter distributions.
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